On a family of maps with multiple chaotic attractors
نویسنده
چکیده
Multistability is characterized by the occurrence of multiple coexisting attractors. We introduce a family of maps that possess this property and in particular exhibits coexisting chaotic attractors. In this family not only the maps’ parameters can be varied but also their dimension. So, four types of multistable attractors, equilibria, periodic orbits, quasi-periodic orbits and chaotic attractors can be found for a given dimension. 2007 Published by Elsevier Ltd.
منابع مشابه
Watermarking Scheme Based on Multiple Chaotic Maps
a watermarking scheme for Grayscale image isproposed based on a family of the chaotic maps and discretecosine transform. Jacobian Elliptic mapis employed to encrypt ofwatermarked logo. Piecewise nonlinear chaotic map is also usedto determine the location of DCT coefficients for the watermarkembedding. The purpose of this algorithm is to improve theshortcoming of watermarking such as small key s...
متن کاملChaotic attractors of relaxation oscillators
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invert...
متن کاملATTRACTORS ON P k
We show that special perturbations of a particular holomorphic map on P give us examples of maps that possess chaotic nonalgebraic attractors. Furthermore, we study the dynamics of the maps on the attractors. In particular, we construct invariant hyperbolic measures supported on the attractors with nice dynamical properties.
متن کاملCyclicity of chaotic attractors in one-dimensional discontinuous maps
A chaotic attractor may consist of some number of bands (disjoint connected subsets). In continuous maps multi-band chaotic attractors are cyclic, that means every generic trajectory visits the bands in the same order. We demonstrate that in discontinuous maps multi-band chaotic attractors may be acyclic. Additionally, a simple criterion is proposed which allows to distinguish easily between cy...
متن کاملControlling Chaos in Maps with Multiple Strange attractors
We study chaotic maps with multiple coexisting strange attractors and show how such systems can be controlled. To this end, a control scheme is proposed which is capable of stabilizing a desired motion within one strange attractor as well as taking the system dynamics from one strange attractor to another. To demonstrate the given control scheme, several examples are considered.
متن کامل